The Role of GNSS in 5G Wireless Networks

Roberto Prieto-Cerdeira
Directorate of Navigation, ESA/ESTEC
5 December 2018 – NAVITEC 2018
Co-authors – ESA’s 5G GNSS Task Force

Florin Grec

Lionel Ries

Stefano Cioni

Riccardo de Gaudenzi

Miguel Manteiga

ESA 5G GNSS Task Force is a joint effort from ESA’s Directorate of Navigation and Directorate of Technology, Eng & Quality in coordination with EC and GSA under Horizon 2020 Framework Programme for Research and Innovation in Satellite Navigation (HSNAV)
Evolution of PNT landscape: applications and technologies

The Position-Navigation-Time (PNT) landscape is rapidly evolving

More demanding use cases (incl. safety-critical) in challenging environments

Growing interests for PNT resilience

5G landscape expands the scope of PNT (e.g. high-accuracy, indoor)

Ongoing GNSS evolutions, and new space-based PNTs emerge

Opportunity for hybridization of PNT technologies, in particular multi-GNSS and 5G

- Support the growing commercial PNT applications, including safety-critical ones
- Continue to use and foster further adoption of GNSS in these emerging applications
5G context: Overview

Enhanced mobile broadband
- Multi-Gbps data rates
- Extreme capacity
- Uniformity
- Deep awareness

Mission-critical services
- Ultra-low latency
- High reliability
- High availability
- Strong security

Massive Internet of Things
- Low cost
- Ultra-low energy
- Deep coverage
- High density

Mobile devices
Networking
Automotive
Robotics
Health
Wearables
Smart cities
Smart homes
5G context: Overview

Enhanced mobile broadband
- Multi-Gbps data rates
- Extreme capacity
- Uniformity
- Deep awareness

Mission-critical services
- Ultra-low latency
- High reliability
- High availability
- Strong security

Massive Internet of Things
- Low cost
- Ultra-low energy
- Deep coverage
- High density

Device:
- Smartphones and tablets
- Internet of Things
- Autonomous vehicles
- Wearables
- Smart cities
- Smart homes

Worldwide smartphone market share 2014

Mobile devices
Networking

Autonomous
Robotics
Health

Weaves, smart cities, smart homes
5G context: examples of new elements (New Radio)

4G LTE technologies plus

Large antenna arrays
Directional transmission

Large bandwidths
Higher carrier frequencies

Device-to-device communication

Network densification

Credits: G. Seco-Granadios
5G Positioning: a context shaped by very diverse verticals

Transportation
(typ. <0.3m–3m, high reliability)
Autonomous vehicles, UAV, Rail, Road-tolling, etc.

Factories of the future
(< 0.3m–10m, very high availability, low energy)
Machine control, Industry automation, Asset tracking, etc.

High-accuracy LBS, Augmented Reality, eHealth
(wide area coverage, 1m-10m)

+ **Network synchronization**
 - Energy, PSTN, 4G/5G Cellular Networks
 - Financial Transaction
Galileo and multi-GNSS high-accuracy capabilities

Interoperability with other GNSS: Combined use of 4 GNSS yields high availability and good accuracy, even in urban environments

Galileo is a reality, also in mass-market devices
Check for Galileo-enabled devices www.usegalileo.eu

Dual frequency GPS/Galileo chipsets are reaching mass-market devices (sub-meter accuracy)

Galileo HAS (High-Accuracy Service)

Dual frequency GPS/Galileo chipsets are reaching mass-market devices (sub-meter accuracy)

Figure of Merit: MM RX
Horiz. Perc-68 [m] 1.6
Horiz. Perc-95 [m] 6.4
3D Perc-68 [m] 3.2
3D Perc-95 [m] 10.9
Availability [%] 100

Galileo Signals-in-Space + Real-time corrections

High-Accuracy: Ability of the system to provide a positioning accuracy in the order of a few centimeters.

Global coverage

GAL Ground Segment
User Equipment

Mass-market multi-GNSS receiver

Error [meters]

Horizontal Position error [m]
Motivation for 3GPP standardization landscape

Capture 5G trends and use cases (e.g. critical applications, IoT) and take them into account for evolutions of satellite-based PNT

Understand emerging 5G PNT technologies and their capabilities to complement GNSS

Promote GNSS state-of-the-art and interoperability with 5G (e.g. high accuracy)
Areas of focus in 3GPP standardization

HIGH-ACCURACY GNSS
Augmented GNSS with cm-level accuracy

USE CASES
Positioning Requirements
- 0.3m Hacc
- 1-3m Hacc
- >10m Hacc

HIGH-ACCURACY HYBRID POSITIONING
Augmented GNSS + 5G-based techniques + sensors

NETWORK SYNCHRONISATION
Prerequisite for High-accuracy positioning in 5G

Network synchronisation is a prerequisite for high-accuracy positioning in 5G.
5G Positioning: standardised Positioning Service Levels in 3GPP

- **Service Level 7:** relative positioning with 0.2m accuracy
 - V2V, industry automation (machine control)

Useful 3GPP documents related to positioning (www.3gpp.org):
- Reports: TR 22.872, TR 22.804, TR 22.889
- Specifications: TS 22.261
PNT Hybridization: mix of complementary technologies to support environment-independent and resilient PNT in 5G context

4G positioning technology mix

3GPP positioning methods, Ericsson [https://ieeexplore.ieee.org/document/8377447/]

- Multi GNSS (and their evolutions)
- Dead-reckoning (INS, barometer, vision, radar, etc.)
- APNT & local PNT infrastructures (TBS, BLE beacons, LEO, etc.)

ESA UNCLASSIFIED - For Official Use
Coverage of 5G positioning requirements with current technologies

<table>
<thead>
<tr>
<th>Positioning service level</th>
<th>Absolute(A) or Relative(R) positioning</th>
<th>Accuracy (95% confidence level)</th>
<th>Availability</th>
<th>Latency</th>
<th>Coverage, environment of use and UE velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical Accuracy</td>
<td>Horizontal Accuracy</td>
<td></td>
<td></td>
<td>5G positioning service area</td>
</tr>
<tr>
<td></td>
<td>(note 1)</td>
<td></td>
<td></td>
<td></td>
<td>5G enhanced positioning service area (note 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Outdoor and tunnels</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indoor - up to 30 km/h</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>10 m</td>
<td>3 m</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 s</td>
<td>(rural and urban) up to 250 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(rural and urban) up to 500 km/h for trains and up to 250 km/h for other vehicles</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>3 m</td>
<td>3 m</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 s</td>
<td>(rural and urban) up to 500 km/h for trains and up to 250 km/h for other vehicles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(rural and urban) up to 500 km/h for trains and up to 250 km/h for other vehicles</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1 m</td>
<td>2 m</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 s</td>
<td>(rural and urban) up to 500 km/h for trains and up to 250 km/h for other vehicles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(rural and urban) up to 500 km/h for trains and up to 250 km/h for other vehicles</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1 m</td>
<td>2 m</td>
<td>99.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>0.3 m</td>
<td>2 m</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 s</td>
<td>(rural) up to 250 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(rural) up to 250 km/h</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0.3 m</td>
<td>2 m</td>
<td>99.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(dense urban) up to 60 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(dense urban) up to 60 km/h</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>0.2 m</td>
<td>0.2 m</td>
<td>99%</td>
<td>Relative positioning is between two UEs within 10 m of each other or between one UE and 5G positioning nodes within 10 m of each others (note 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 s</td>
<td>Indoor and outdoor (rural, urban, dense urban) up to 30 km/h</td>
</tr>
</tbody>
</table>

NOTE 1: The objective for the vertical positioning requirement is to determine the floor for indoor use cases and to distinguish between superposed tracks for road and rail use cases (e.g. bridges).

NOTE 2: Indoor includes location inside buildings such as offices, hospital, industrial buildings.

NOTE 3: 5G positioning nodes are infrastructure equipment deployed in the service area to enhance positioning capabilities (e.g. beacons deployed on the perimeter of a rendezvous area or on the side of a warehouse).
The opportunity of hybrid GNSS/5G for 5G positioning services

Positioning service levels

<table>
<thead>
<tr>
<th>Positioning service level</th>
<th>Absolute(A) or Relative(R) positioning</th>
<th>Accuracy (95% confidence level)</th>
<th>Availability</th>
<th>Latency</th>
<th>Coverage, environment of use and UE velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Horizontal Accuracy</td>
<td>Vertical Accuracy (note 1)</td>
<td></td>
<td>5G positioning service area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accuracy</td>
<td></td>
<td></td>
<td>Outdoor and tunnels</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>10 m</td>
<td>3 m</td>
<td>95 %</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(rural and urban) up to 250 km/h</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>3 m</td>
<td>3 m</td>
<td>99 %</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1 m</td>
<td>2 m</td>
<td>99 %</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1 m</td>
<td>2 m</td>
<td>99.9 %</td>
<td>15 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>0.3 m</td>
<td>2 m</td>
<td>99 %</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0.3 m</td>
<td>2 m</td>
<td>99.9 %</td>
<td>10 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>0.2 m</td>
<td>0.2 m</td>
<td>99 %</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The objective for the vertical positioning requirement is to determine the floor for indoor use cases and to distinguish between superposed tracks for road and rail use cases (e.g. bridges).

NOTE 2: Indoor includes location inside buildings such as offices, hospital, industrial buildings.

NOTE 3: 5G positioning nodes are infrastructure equipment deployed in the service area to enhance positioning capabilities (e.g. beacons deployed on the perimeter of a rendezvous area or on the side of a warehouse).
Areas of focus in 3GPP standardization

HIGH-ACCURACY GNSS
Augmented GNSS with cm-level accuracy

USE CASES
Positioning Requirements
0.3m Hacc 1 -3m Hacc >10m Hacc

HIGH-ACCURACY HYBRID POSITIONING
Augmented GNSS + 5G-based techniques + sensors

NETWORK SYNCHRONISATION
Prerequisite for High-accuracy positioning in 5G

0.3m Hacc 1 -3m Hacc >10m Hacc
Positioning enhancements in LTE/4G Technologies - before and after the WI

Releases 14

A-GNSS & DGNSS (Code-based)

3GPP: OTDoA, UTDoA, ECID

Non-3GPP: TBS with MBS signals

W-LAN

Bluetooth

Barometric pressure sensor

Releases 15

Release 14 positioning methods

RTK and N-RTK (VRS, FKP, MAC)

PPP

IMU (displacement reporting, not raw output)
Positioning in LTE/4G
Architecture (U-plane & C-plane)

User plane = DATA LINK (IP)
Control plane = CELLULAR SIGNAL

!The focus in 3GPP is on the LPP (C-plane)
Broadcast solution for High-Accuracy GNSS (HA-GNSS) over LTE (Release 15)

<table>
<thead>
<tr>
<th>GNSS technology (Mass-market UE)</th>
<th>Rural</th>
<th>Sub-urban</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-GNSS (AGNSS)</td>
<td>< 1m</td>
<td>< 3m</td>
<td>< 10m</td>
</tr>
<tr>
<td>Multi GNSS augmented with PPP or RTK</td>
<td>< 10 cm</td>
<td>< 1m</td>
<td>< 3m</td>
</tr>
</tbody>
</table>

Typical performances of mass-market GNSS technologies

<table>
<thead>
<tr>
<th>OSR</th>
<th>SSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-GNSS</td>
<td>SSR</td>
</tr>
<tr>
<td>Single-base RTK</td>
<td>PPP</td>
</tr>
<tr>
<td>N-RTK 1: MAC</td>
<td>PPP-RTK</td>
</tr>
<tr>
<td>N-RTK 2: FKP</td>
<td></td>
</tr>
<tr>
<td>N-RTK 3: VRS</td>
<td></td>
</tr>
<tr>
<td>PPP</td>
<td></td>
</tr>
<tr>
<td>PPP-RTK</td>
<td></td>
</tr>
</tbody>
</table>

Perspective for Release-16 / 17: extend protocol to PPP/RTK solutions for mass-market
GNSS and 5G: A mutually-beneficial partnership

Augment GNSS
(e.g. convergence time, integrity, reliability)

Broadcast HA-GNSS corrections
(perfect dissemination channel for commercial applications)

Extend coverage of high-accuracy positioning
(outside NR hotspots)

5G Network synchronization
(for precise network-based positioning)

Ubiquitous high-accuracy PNT
(seamless positioning service, indoor to rural)

Drive PNT innovation
(GNSS and 5G are key building blocks for new PNT architectures)
RAN: Items to be considered for NR Positioning standardization (Release 16 and beyond)

SA1 Use cases & service level requirements versus NR performance targets

- Carry forward LTE hybridisation capabilities (LPP) to NR (NPP), including RTK/PPP corrections

Assess performance of hybrid between RAT-dependent and GNSS

Provide ubiquitous high-accuracy outside 5G NR coverage (limited to densely populated area)

Broadcasting capabilities for dissemination of HA-GNSS

- e.g. same data for thousands of vehicles in a cell

� ESA UNCLASSIFIED - For Official Use

Network time synchronisation

5G PPP.eu

© GSA
Supporting project: GNSS integration into 5G wireless networks (GINTO5G)

<table>
<thead>
<tr>
<th>WP1 – Field experiments</th>
<th>WP2 – Simulation platform</th>
<th>WP3 – Support to Standardization</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Accuracy: for ADAS and UAV. Data collection in Munich expected to start in late February 2019.</td>
<td>Analysis of data from field test cases results and derivation of error models.</td>
<td>Support to 3GPP standardisation (SA and RAN)</td>
</tr>
<tr>
<td>IoT low power: platform under discussion. Measurements in 2019.</td>
<td>Positioning Performance Coverage and Trajectory (PoPeCoT) simulator - - for performance derivation by different technologies and hybridisation, for different environmental conditions during trajectories or coverage areas.</td>
<td></td>
</tr>
</tbody>
</table>

- Different technologies (High Accuracy GNSS, LTE / NR, inertials)

Funded under ESA’s European GNSS Evolutions Programme
Conclusions / Key messages

The **PNT landscape** is rapidly evolving
- Emergence of more demanding, safety-critical use cases (accuracy, ubiquity, security, etc.)
- 5G landscape expands the scope of PNT to address new use cases / verticals

Multi-GNSS is expected to continue being a cornerstone of modern, ubiquitous, reliable, accurate PNT, also in the context of 5G
- **Hybridization** with other technologies may complement GNSS towards environment-independent (e.g. *indoor*), reliable PNT

More stringent PNT use cases and associated positioning requirements are identified in 5G:
- larger number of consumers of **high accuracy positioning**, exploiting the availability of high-accuracy augmentation data dissemination
- for **Internet of Things IoT positioning**, low power consumption is a key driver. 3GPP technologies, such as NB-IoT, are suitable for communications but cannot provide reasonable accuracies (<50m). Hybridisation of optimised GNSS for low-power together with 3GPP technologies for comms may provide the right balance.
- the importance of **timing** by GNSS is likely to increase for 5G (e.g. GNSS as primary source of V2X sidelink synchronisation).
Thank you